Hammerhead ribozyme activity and oligonucleotide duplex stability in mixed solutions of water and organic compounds
نویسندگان
چکیده
Nucleic acids are useful for biomedical targeting and sensing applications in which the molecular environment is different from that of a dilute aqueous solution. In this study, the influence of various types of mixed solutions of water and water-soluble organic compounds on RNA was investigated by measuring the catalytic activity of the hammerhead ribozyme and the thermodynamic stability of an oligonucleotide duplex. The compounds with a net neutral charge, such as poly(ethylene glycol), small primary alcohols, amide compounds, and aprotic solvent molecules, added at high concentrations changed the ribozyme-catalyzed RNA cleavage rate, with the magnitude of the effect dependent on the NaCl concentration. These compounds also changed the thermodynamic stability of RNA base pairs of an oligonucleotide duplex and its dependence on the NaCl concentration. Specific interactions with RNA molecules and reduced water activity could account for the inhibiting effects on the ribozyme catalysis and destabilizing effects on the duplex stability. The salt concentration dependence data correlated with the dielectric constant, but not with water activity, viscosity, and the size of organic compounds. This observation suggests the significance of the dielectric constant effects on the RNA reactions under molecular crowding conditions created by organic compounds.
منابع مشابه
Catalytic Activities of Ribozymes and DNAzymes in Water and Mixed Aqueous Media
Catalytic nucleic acids are regarded as potential therapeutic agents and biosensors. The catalytic activities of nucleic acid enzymes are usually investigated in dilute aqueous solutions, although the physical properties of the reaction environment inside living cells and that in the area proximal to the surface of biosensors in which they operate are quite different from those of pure water. T...
متن کاملPeptide nucleic acid (PNA) is capable of enhancing hammerhead ribozyme activity with long but not with short RNA substrates.
Long RNA substrates are inefficiently cleaved by hammerhead ribozymes in trans. Oligonucleotide facilitators capable of affecting the ribozyme activity by interacting with the substrates at the termini of the ribozyme provide a possibility to improve ribozyme mediated cleavage of long RNA substrates. We have examined the effect of PNA as facilitator in vitro in order to test if even artificial ...
متن کاملCan hammerhead ribozymes be efficient tools to inactivate gene function?
In order to improve hammerhead ribozyme efficiency and specificity, we have analyzed, both in vitro and in vivo, the activity of a series of ribozyme/substrate combinations that have the same target sequence but differ in the length of the ribozyme/substrate duplex or in their structure, i.e., the total length of the RNA. In vitro, we have found that optimal kcat/Km (at 37 degrees C) is obtaine...
متن کاملK(+)-Responsive off-to-on switching of hammerhead ribozyme through dual G-quadruplex formation requiring no heating and cooling treatment.
Functional RNAs that switch their activities in response to K(+) may sense the intracellular (100 mM) and extracellular (5 mM) K(+) concentrations and regulate their functions accordingly. Previously, we developed a quadruplex hammerhead ribozyme (QHR) whose conformational change, from a duplex to a G-quadruplex, triggered by K(+) results in expression of the activity. However, this QHR require...
متن کاملStructure, dynamics, and function of the hammerhead ribozyme in bulk water and at a clay mineral surface from replica exchange molecular dynamics.
Compared with proteins, the relationship between structure, dynamics, and function of RNA enzymes (known as ribozymes) is far less well understood, despite the fact that ribozymes are found in many organisms and are often conceived as "molecular fossils" of the first self-replicating molecules to have arisen on Earth. To investigate how ribozymal function is governed by structure and dynamics, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014